KASMEJ

Kastamonu Medical Journal regularly publishes internationally qualified issues in the field of Medicine in the light of up-to-date information.

EndNote Style
Index
Original Article
Effect of lipoic acid on cisplatin-induced cardiotoxicity and inflammation in cardiomyocytes
Aims: Cisplatin (CPL) is a potent chemotherapeutic agent widely used to treat various cancers. However, CPL causes toxicity in various tissues, including the heart. Lipoic acid (LPA) is a thiol compound with antioxidant, anti-inflammatory, and antiapoptotic properties. Although LPA has been reported to have protective effects in various cardiac diseases, the mechanisms underlying its cardio-protective effects have not been elucidated. This study aimed to establish a CPL-induced cardiotoxicity model in the H9c2 cardiomyocyte cell line, to understand the mechanisms underlying this cardiotoxicity, and to investigate the effect of LPA on cardiotoxicity.
Methods: H9c2 cardiomyocyte cells as control (CNT), CPL (40 µm), and LPA-1 (300 µm LPA, and 40 µm CPL), LPA-2 (500 µm LPA, and 40 µm CPL) in combination along with CIS were used. In the analyses made, glutathione (GSH) and glutathione peroxidase (GSHPx) enzyme activity, lipid peroxidation [malondialdehyde, (MDA)] levels, inflammation markers interleukin (IL) -1ß, IL-6, and tumor necrosis factor (TNF) -? levels, total oxidant/antioxidant (TOS and TAS) status levels, reactive oxygen species (ROS) and caspase activity (Casp 3 and 9) in the cells were determined.
Results: CIS treatment caused cardiomyocyte cell toxicity and increased Casp 3, Casp 9, ROS, IL-1ß, IL-6, TNF-?, TOS, and MDA levels while decreasing GSHPx, GSH, and TAS levels. Increased inflammation and impaired oxidant/antioxidant balance in cardiomyocyte cells after CPL treatment were regulated by LPA treatment.
Conclusion: LPA treatment was found to have a protective effect against CPL-induced cardiotoxicity in cardiomyocyte cells.


1. Domingo IK, Latif A, Bhavsar AP. Pro-inflammatory signalling propels cisplatin-induced toxicity. Int J Mol Sci. 2022;29(13):7227. doi:10.3390/ijms23137227
2. Miller RP, Tadagavadi RK, Ramesh G, Reeves WB. Mechanisms of cisplatin nephrotoxicity. Toxins (Basel). 2010;2(11):2490-2518. doi:10.3390/toxins2112490
3. Al-Majed AA. Carnitine deficiency provokes cisplatin-induced hepatotoxicity in rats.Basic Clin Pharmacol Toxicol.2007;100(3):145-150. doi:10.1111/j.1742-7843.2006.00024.x
4. Wang SH, Tsai KL, Chou WC, et al. Quercetin mitigates cisplatin-induced oxidative damage and apoptosis in cardiomyocytes through Nrf2/HO-1 signaling pathway. Am J Chin Med. 2022;50(5):1281-1298. doi:10.1142/S0192415X22500537
5. Kart A, Cigremis Y, Karaman M, Ozen H. Caffeic acid phenethyl ester (CAPE) ameliorates cisplatin-induced hepatotoxicity in rabbit. Exp.Toxicol.Pathol. 2010;62(1):45-52. doi:10.1016/j.etp.2009.02.066
6. Li S, Lin Q, Shao X, et al. NLRP3 inflammasome inhibition attenuates cisplatin-induced renal fibrosis by decreasing oxidative stress and inflammation. Exp Cell Res. 2019;383(1):111488. doi:10.1016/j.yexcr.2019. 07.001
7. Dasari S, Njiki S, Mbemi A, Yedjou CG, Tchounwou PB. Pharmacological effects of cisplatin combination with natural products in cancer chemotherapy. Int J Mol Sci. 2022;23(3):1532. doi:10.3390/ijms23031532
8. So H, Kim H, Kim Y, et al. Evidence that cisplatin-induced auditory damage is attenuated by downregulation of pro-inflammatory cytokines via Nrf2/HO-1. J Assoc Res Otolaryngol. 2008;9(3):290-306. doi:10.1007/s10162-008-0126-y
9. Dasari S, Tchounwou PB. Cisplatin in cancer therapy: molecular mechanisms of action. Eur J Pharmacol. 2014;740:364-378. doi:10.1016/j.ejphar.2014.07.025
10. Gentilin E, Simoni E, Candito M, Cazzador D, Astolfi L. Cisplatin-induced ototoxicity: updates on molecular targets. Trends Mol Med. 2019;25(12): 1123-1132. doi:10.1016/j.molmed.2019.08.002
11. Qian P, Yan LJ, Li YQ, et al. Cyanidin ameliorates cisplatin-induced cardiotoxicity via inhibition of ROS-mediated apoptosis. Exp Ther Med. 2018;15(2):1959-1965. doi:10.3892/etm.2017.5617
12. Cao Z, Tsang M, Zhao H, Li Y. Induction of endogenous antioxidants and phase 2 enzymes by alpha-lipoic acid in rat cardiac H9C2 cells: protection against oxidative injury. Biochem Biophys Res Commun. 2003;310(3):979-985. doi:10.1016/j.bbrc.2003.09.110
13. Yazğan B, Yazğan Y, Nazıroğlu M. Alpha-lipoic acid modulates the diabetes mellitus-mediated neuropathic pain via inhibition of the TRPV1 channel, apoptosis, and oxidative stress in rats. J Bioenerg Biomembr. 2023;55(3): 179-193. doi:10.1007/s10863-023-09971-w
14. Wollin SD, Jones PJ. Alpha-lipoic acid and cardiovascular disease. J Nutr. 2003;133(11):3327-3330. doi:10.1093/jn/133.11.3327
15. Al-Majed AA, Gdo AM, Al-Shabanah OA, Mansour MA. Alpha-lipoic acid ameliorates myocardial toxicity induced by doxorubicin. Pharmacol Res. 2002;46(6):499-503. doi:10.1016/s1043661802002311
16. Yao Y, Li R, Ma Y, et al. α-Lipoic acid increases tolerance of cardiomyoblasts to glucose/glucose oxidase-induced injury via ROS-dependent ERK1/2 activation. Biochim Biophys Acta. 2012;1823(4):920-929. doi:10.1016/j.bbamcr.2012.02.005
17. Cao X, Chen A, Yang P, et al. Alpha-lipoic acid protects cardiomyocytes against hypoxia/reoxygenation injury by inhibiting autophagy. Biochem Biophys Res Commun. 2013;441(4):935-940. doi:10.1016/j.bbrc.2013.10.166
18. Jiang S, Zhu W, Wu J, et al. α-Lipoic acid protected cardiomyoblasts from the injury induced by sodium nitroprusside through ROS-mediated Akt/Gsk-3β activation. Toxicol In Vitro. 2014;28(8):1461-1473. doi:10.1016/j.tiv.2014.08.006
19. Yazğan Y. Effect of gallic acid on PTZ-induced neurotoxicity, oxidative stress and inflammation in SH-SY5Y neuroblastoma cells. Acta Med. Alanya. 2024;8(1):10-17. doi:10.30565/medalanya.1415132
20. Yazğan Y, Nazıroğlu M. Involvement of TRPM2 in the neurobiology of experimental migraine: focus on oxidative stress and apoptosis. Mol Neurobiol. 2021;58(11):5581-5601. doi:10.1007/s12035-021-02503-w
21. Placer ZA, Cushman LL, Johnson BC. Estimation of product of lipid peroxidation (malonyl dialdehyde) in biochemical systems. Anal Biochem. 1966;16(2):359-364. doi:10.1016/0003-2697(66)90167-9
22. Yazğan B, Yazğan Y. Potent antioxidant alpha lipoic acid reduces STZ-induced oxidative stress and apoptosis levels in the erythrocytes and brain cells of diabetic rats. J Cell Neurosci Oxid Stress. 2022;14(2):1085-1094. doi:10.37212/jcnos.1245152
23. Sedlak J, Lindsay RH. Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman’s reagent. Anal Biochem. 1968; 25(1):192-205. doi:10.1016/0003-2697(68)90092-4
24. Lawrence RA, Burk RF. Glutathione peroxidase activity in selenium-deficient rat liver. Biochem Biophys Res Commun. 1976;71(4):952-958. doi: 10.1016/0006-291x(76)90747-6
25. Al-Majed AA, Sayed-Ahmed MM, Al-Yahya AA, Aleisa MA, Al-Rejaie SS, Al Shabanah OA. Propionyl-L-carnitine prevents the progression of cisplatin induced cardiomyopathy in a carnitine-depleted rat model. Pharmacol Res. 2006;53(3):278-286. doi:10.1016/j.phrs.2005.12.005
26. Pai VB, Nahata MC. Cardiotoxicity of chemotherapeutic agents: incidence, treatment and prevention. Drug Saf. 2000;22(4):263-302. doi: 10.2165/00002018-200022040-00002
27. Yildirim C, Cangi S, Orkmez M, et al. Sinapic acid attenuated cisplatin-induced cardiotoxicity by inhibiting oxidative stress and inflammation with GPX4-mediated NF-kB modulation. Cardiovasc Toxicol. 2023;23(1): 10-22. doi:10.1007/s12012-022-09773-3
28. Rybak LP, Mukherjea D, Jajoo S, Ramkumar V. Cisplatin ototoxicity and protection: clinical and experimental studies. Tohoku J Exp Med. 2009; 219(3):177-186. doi:10.1620/tjem.219.177
29. Arany I, Safirstein RL. Cisplatin nephrotoxicity. Semin Nephrol. 2003;23(5):460-464. doi:10.1016/s0270-9295(03)00089-5
30. Kilic K, Sakat MS, Akdemir FNE, Yildirim S, Saglam YS, Askin S. Protective effect of gallic acid against cisplatin-induced ototoxicity in rats. Braz J Otorhinolaryngol. 2019;85(3):267-274. doi:10.1016/j.bjorl.2018.03.001
31. Kohsaka T, Minagawa I, Morimoto M, et al. Efficacy of relaxin for cisplatininduced testicular dysfunction and epididymal spermatotoxicity. Basic Clin Androl. 2020;30:3. doi:10.1186/s12610-020-0101-y
32. El-Awady el-SE, Moustafa YM, Abo-Elmatty DM, Radwan A. Cisplatin-induced cardiotoxicity: Mechanisms and cardioprotective strategies. Eur J Pharmacol. 2011;650(1):335-341. doi:10.1016/j.ejphar.2010.09.085
33. Gunturk EE, Yucel B, Gunturk I, Yazici C, Yay A, Kose K. The effects of N-acetylcysteine on cisplatin induced cardiotoxicity. Bratisl Lek Listy. 2019;120(6):423-428. doi:10.4149/BLL_2019_068
34. Jia Y, Guo H, Cheng X, et al. Hesperidin protects against cisplatin-induced cardiotoxicity in mice by regulating the p62-Keap1-Nrf2 pathway. Food Funct. 2022;13(7):4205-4215. doi:10.1039/d2fo00298a
35. Xia J, Hu JN, Zhang RB, et al. Icariin exhibits protective effects on cisplatin-induced cardiotoxicity via ROS-mediated oxidative stress injury in vivo and in vitro. Phytomedicine. 2022;104:154331. doi:10.1016/j.phymed.2022.154331
36. Hussein A, Ahmed AA, Shouman SA, Sharawy S. Ameliorating effect of DL-α-lipoic acid against cisplatin-induced nephrotoxicity and cardiotoxicity in experimental animals. Drug Discov Ther. 2012;6(3):147-156.
37. Memudu AE, Adewumi AE. Alpha lipoic acid ameliorates scopolamine induced memory deficit and neurodegeneration in the cerebello-hippocampal cortex. Metab Brain Dis. 2021;36(7):1729-1745. doi:10.1007/s11011-021-00720-9
38. So H, Kim H, Lee JH, et al. Cisplatin cytotoxicity of auditory cells requires secretions of proinflammatory cytokines via activation of ERK and NF-kappaB. J Assoc Res Otolaryngol. 2007;8(3):338-355. doi:10.1007/s10162-007-0084-9
39. Kim J, Cho HJ, Sagong B, et al. Alpha-lipoic acid protects against cisplatin-induced ototoxicity via the regulation of MAPKs and proinflammatory cytokines. Biochem Biophys Res Commun. 2014;449(2):183-189. doi:10. 1016/j.bbrc.2014.04.118
40. Altındağ F, Meydan I. Evaluation of protective effects of gallic acid on cisplatin-induced testicular and epididymal damage. Andrologia. 2021; 53(10):e14189. doi:10.1111/and.14189
41. Ibrahim MA, Albahlol IA, Wani FA, et al. Resveratrol protects against cisplatin-induced ovarian and uterine toxicity in female rats by attenuating oxidative stress, inflammation and apoptosis. Chem Biol Interact. 2021;338: 109402. doi:10.1016/j.cbi.2021.109402
42. Qi B, Zheng Y, Gao W, et al. Alpha-lipoic acid impedes myocardial ischemia-reperfusion injury, myocardial apoptosis, and oxidative stress by regulating HMGB1 expression. Eur J Pharmacol. 2022;933:175295. doi:10. 1016/j.ejphar.2022.175295
Volume 4, Issue 4, 2024
Page : 175-181
_Footer