KASMEJ

Kastamonu Medical Journal regularly publishes internationally qualified issues in the field of Medicine in the light of up-to-date information.

EndNote Style
Index
Original Article
Evaluation of the methylation status of the MB-COMT, APC2, NR3C1, and DRD2 genes in Turkish patients with microtia
Aims: Microtia is defined as a congenital malformation of the middle and external ears. DNA methylation is the major epigenetic modification of genomic DNA that is regulated in the early embryonic stage. In this study, we analyzed the methylation status of the MB-COMT, APC2, NR3C1, and DRD2 genes in patients with microtia.
Methods: The blood samples were taken from microtia patients and healthy controls. Genomic DNA was isolated using a commercial kit. The methylation status of the MB-COMT, APC2, NR3C1, and DRD2 genes was analyzed using the methylation-specific polymerase chain reaction (MS-PCR) method. The results were evaluated statistically.
Results: The DRD2 methylation status was found to be associated with microtia (p?0.001). We found that the DRD2 gene was partially methylated in all patients with microtia. There was no significant difference between the methylation status of the MB-COMT, APC2, and NR3C1 genes and microtia.
Conclusion: To our knowledge, this is the first study in our country to evaluate the relationship between the methylation of these genes and the risk of microtia. Our results demonstrate the presence of epigenetic changes in the DRD2 gene during microtia development. Methylation may have contributed to the pathogenesis of microtia as it affects gene expression. Studies with larger sample sizes and in different ethnic groups are needed to further investigate the role of these genes in microtia.


1. Chen X, Zhang R, Zhang Q, et al. Microtia patients: Auricular chondrocyteECM is promoted by CGF through IGF-1 activation of the IGF-1R/PI3K/AKT pathway. J Cell Physiol. 2019;234(12):21817-21824. doi:10.1002/jcp.27316
2. Chen X, Zhang R. Microtia epigenetics. Medicine (Baltimore).2019;98(41):e17468.
3. Park C, Rosenblat JD, Brietzke E, et al. Stress, epigenetics and depression:asystematic review. Neurosci Biobehav Rev. 2019;102:139-152.
4. Bajrami E, Spiroski M. Genomic imprinting. Open Access Maced J MedSci 2016;4(1):181-184.
5. Tenhunen J Salminen M, Lundström K, et al. Genomic organization ofthe human catechol O-methyltransferase gene and its expression from two distinct promoters. Eur J Biochem. 1994;223(3):1049-1059.
6. Mill J, Dempster E, Caspi A, et al. Evidence for monozygotic twin (MZ)discordance in methylation level at two CpG sites in the promoter regionof the catechol-O-methyltransferase (COMT) gene. Am J Med Genet BNeuropsychiatr Genet. 2006;141B(4):421-425.
7. Clevers H, Nusse R. Wnt/β-catenin signaling and disease. Cell.2012;149(6):1192-1205.
8. Iqbal K, Dhakal P, Pierce SH, et al. Catechol-O-methyltransferase andPregnancy Outcome:an Appraisal in Rat. Reprod Sci. 2021;28(2):462-469.
9. Mohamed NE, Hay T, Reed KR, et al. APC2 is critical for ovarian WNTsignalling control, fertility and tumour suppression. BMC Cancer.2019;19(1):677.
10. Bhat RV, Baraban JM, Johnson RC, et al. High levels of expression ofthe tumor suppressor gene APC during development of the rat centralnervous system. J Neurosci. 1994;14(5 Pt 2):3059-3071.
11. Ishikawa TO, Tamai Y, Li Q, et al. Requirement for tumor suppressor Apcin the morphogenesis of anterior and ventral mouse embryo. Dev Biol.2003;253(2):230-246.
12. McEwen BS. Physiology and neurobiology of stress and adaptation:centralrole of the brain. Physiol Rev. 2007;87(3):873-904.
13. Korgun ET, Ozmen A, Unek G, et al. The effects of glucocorticoids onfetal and placental development. X Qian (Ed.),Glucocorticoids - NewRecognition of Our Familiar Friend, InTech, Croatia 2012;305-336.
14. Schmidt M, Lax E, Zhou R, et al. Fetal glucocorticoid receptor (Nr3c1)deficiency alters the landscape of DNA methylation of murine placentain a sex-dependent manner and is associated to anxiety-like behavior inadulthood. Transl Psychiatry.2019;9(1):23.
15. Palma-Gudiel H, Córdova-Palomera A, Leza JC, et al. Glucocorticoidreceptor gene (NR3C1) methylation processes as mediators of earlyadversity in stress-related disorders causality:A critical review.Neuroscience & Biobehavioral Reviews. 2015;55:520-535.
16. Money KM, Stanwood GD. Developmental origins of brain disorders:rolesfor dopamine. Front Cell Neurosci. 2013;7:260.
17. Yu Q, Liu YZ, Zhu YB, et al. Genetic labeling reveals temporal and spatialexpression pattern of D2 dopamine receptor in rat forebrain. Brain StructFunct. 2019;224(3):1035-1049.
18. Lovic V, Belay H, Walker CD,et al. Early postnatal experience and DRD2genotype affect dopamine receptor expression in the rat ventral striatum.Behav Brain Res. 2013;237:278-282.
19. Grandy DK, Litt M, Allen L, et al. The human dopamine D2 receptor geneis located on chromosome 11 at q22-q23 and identifies a TaqI RFLP. Am JHum Genet 1989;45(5):778-785.
20. Aytac HM, Oyaci Y, Pehlivan M, et al. DNA Methylation Pattern ofGene Promoters of MB-COMT, DRD2, and NR3C1 in Turkish PatientsDiagnosed with Schizophrenia. Clin Psychopharmacol Neurosci.2022;20(4):685-693.
21. Nohesara S, Ghadirivasfi M, Barati M, et al. Methamphetamine-InducedPsychosis Is Associated With DNA Hypomethylation and IncreasedExpression of AKT1 and Key Dopaminergic Genes. Am J Med Genet BNeuropsychiatr Genet. 2016;171(8):1180-1189.
22. Nohesara S, Ghadirivasfi M, Mostafavi S, et al. DNA hypomethylation ofMB-COMT promoter in the DNA derived from saliva in schizophreniaand bipolar disorder. J Psychiatr Res. 2011;45(11):1432-1438. doi:10.1016/j.jpsychires.2011.06.013
23. Lind GE, Kleivi K, Meling GI, et al. ADAMTS1, CRABP1, and NR3C1identified as epigenetically deregulated genes in colorectal tumorigenesis.Cell Oncol. 2006;28(5-6):259-272. doi:10.1155/2006/949506
24. Xia Y, Hong Q, Chen X, et al. APC2 and CYP1B1 methylation changes inthe bone marrow of acute myeloid leukemia patients during chemotherapy.Experime Therapeut Med. 2016;12(5):3047-3052.
25. Carey JC, Park AH, Muntz HR. External Ear. In:Stevenson RE, editor.Human malformations and related anomalies. Oxford UniversityPress;Oxford;New York. 2006;329-338.
26. Luquetti DV, Heike CL, Hing AV, et al. Microtia: Epidemiology & Genetics.Am J Med Genet A. 2012;158A(1):124-139.
27. Chafai Elalaoui S, Cherkaoui Jaouad I, Rifai L, et al. Autosomal dominantmicrotia. Eur J Med Genet. 2010;53(2):100-103.
28. Artunduaga MA, Quintanilla-Dieck Mde L, Greenway S, et al. A ClassicTwin Study of External Ear Malformations, Including Microtia. N Engl JMed. 2009;361(12):1216-1218.
29. Okajima H, Takeichi Y, Umeda K, Baba S. Clinical analysis of 592 patientswith microtia. Acta Otolaryngol Suppl. 1996;525:18-24.
30. Smith ZD, Meissner A. DNA methylation:roles in mammaliandevelopment. Nat Rev Genet. 2013;14(3):204-220.
31. Trasler JM,Trasler DG, Bestor TH, et al. DNA methyltransferase in normaland Dnmtn/Dnmtn mouse embryos. Dev Dyn. 1996;206(3):239-247.
32. Clark SJ, Harrison J, Paul CL, Frommer M. High sensitivity mapping ofmethylated cytosines. Nucl Acids Res. 1994;22(15):2990-2997.
33. Breton-Larrivée M, Elder E, McGraw S. DNA methylation, environmentalexposures and early embryo development. Anim Reprod. 2019;16(3):465-474.
34. Hackshaw A, Rodeck C, Boniface S. Maternal smoking in pregnancy andbirth defects:a systematic review based on 173,687 malformed cases and11.7 million controls. Hum Reprod Update. 2011;17(5):589-604.
35. Joubert BR, Felix JF, Yousefi P, et al. DNA methylation in newborns andmaternal smoking in pregnancy:genome-wide consortium meta-analysis.Am J Hum Genet. 2016;98(4):680-696.
36. Mathers JC, Strathdee G, Relton CL. Induction of epigenetic alterations bydietary and other environmental factors. Adv Genet. 2010;71:3-39.
37. Ozaki Y, Yoshino Y, Yamazaki K, et al. DRD2 methylation to differentiatedementia with Lewy bodies from Parkinson’s disease. Acta Neurol Scand.2020 ;141(2):177-182.
38. Aytac HM, Oyaci Y, Pehlivan M, et al. DNA Methylation Pattern ofGene Promoters of MB-COMT, DRD2, and NR3C1 in Turkish PatientsDiagnosed with Schizophrenia. Clin Psychopharmacol Neurosci. 2022;20(4):685-693.
39. Oyaci Y, Aytac HM, Pasin O,et al. Detection of altered methylation ofMB-COMT promotor and DRD2 gene in cannabinoid or syntheticcannabinoid use disorder regarding gene variants and clinical parameters.J Addict Dis. 2021;39(4):526-536.
40. Hill SY, Sharma VK. DRD2 methylation and regional grey matter volumesin young adult offspring from families at ultra-high risk for alcoholdependence. Psychiatry Res Neuroimaging. 2019;286:31-38
Volume 3, Issue 3, 2023
Page : 175-178
_Footer